restAPY Documentation
Release latest

Jun 30, 2020

Contents

Introduction 1
Dependencies 3
Code example 5
Methods in depth 7
4.1 APIClass e e e e e e 7
4.2 Configuring the APL e 7

CHAPTER 1

Introduction

RestAPY is a module made to easily create Rest APIs in Python.

It therefore can be used to make JSON data from your projects easily accessible through a webbrowser or
through API requests.

Note: This documentation contains all the useful information about version 1.2.0

restAPY Documentation, Release latest

2 Chapter 1. Introduction

CHAPTER 2

Dependencies

All of the modules restAPY is based on are part of the default python install and therefore do not need to
be installed seperately. The following list contains all of those modules:

¢ socket
* threading

* json

restAPY Documentation, Release latest

4 Chapter 2. Dependencies

CHAPTER 3

Code example

The following example will first create an API instance that will be accessible through the URL “http:
/Nocalhost:8000/”.

Then it will tell the API what data to return when the user requests this domain at the root path (“/)
After which the API starts listening for incoming connections.

import restAPY

api = restAPY.API(8000, “localhost™)

api.set_path(*“/”, {“celsius”:5, “fahrenheit:41})

api.run()

http://localhost:8000/
http://localhost:8000/

restAPY Documentation, Release latest

6 Chapter 3. Code example

CHAPTER 4

Methods in depth

4.1 API class

The API class is the main building block of restAPY as it contains all of the necessary code to configure
and start your rest APIs

An instance of it can be created like this:
api = restAPY.API(port, url)
Both the port and the url argument are optional. Their default values are:
e port =80
e url =“0.0.0.0”

This means that any http connection to the API’s server will be treated as a request.

4.2 Configuring the API

4.2.1 Debugging (on by default)

This will print events like invalid invalid requests to the terminal. (Turn off in deployed version)
api.debug = False

To then test if your API works you can either put the link to it into your webbrowser or run the following
command inside your terminal:

curl [link]

4.2.2 Configuring what data gets send/processed (set_path)

To tell the API what data to return to the user after they made a request the set_path method is used.

restAPY Documentation, Release latest

Static Data
The function takes a path (String) and JSON compatible data (arrays, dicts, numbers, strings) as arguments
and tells the API to return the given data when the giben path is requested.
data = {“celsius”:5, “fahrenheit”:41}
api.set_path(“/data”, data)

This example would tell the API to return the value of the data variable when path /data is requested
(http://domain/data)

Dynamic Data (status code: “200 OK”)

When you want the API to return dynamic data (for example when it receives a POST request) you put
still use the set_path function, but it now takes a function as an argument instead of the returnable data
itself.

import json
def foo(request):
if request[“Type”] == “POST”:
return json.loads(request[“JSON])
elif request[“Type”] == “GET”:
return [1,2,3,4]
api.set_path(‘“/dynamic”, foo)

In this case the API will return all JSON information about the HTTP request when a POST-Request is
made, whilst just returning [1,2,3,4] when a GET-Request is made.

NOTE1: The data the function returns needs to be convertible into JSON.
NOTE2: Do NOT put the “()” after the function name when giving a function as an argument to set_path()

NOTES3: Your function needs to take request as an argument as this variable will contain all the informa-
tion about the request the user made

Dynamic Data with custom status code

Functions that dynamically work with requests, and also return status codes other than “200 OK”, work
just as those stated above regarding their arguments aswell as its connection to an url. The only difference
is their return value. Instead of just returning the JSON data a dictionary with the same structure as in the
following example needs to be returned:

{ “http_status_code” : “200 OK”, “response_content” : [1,2,3,4] }
4.2.3 Configuring how the data is presented

Indentation

To make the JSON response from the API more readable the default indentation of it is set to 4. This can
be adjusted as follows:

api.json_indent = integer_value

8 Chapter 4. Methods in depth

http://domain/data

restAPY Documentation, Release latest

Sorting the response

By default the JSON response from the API is not sorted. This can be change by doing the following:
api.sort_json = True

NOTE: This can cause complications when using datatypes that can’t be compared with each
other like Strings and Integers

4.2.4 Configuring the APIs network settings
Changing the APIs port

api.port = new_port_number

Changing the APIs url

api.url = new_url_string

Changing the maximum number of connections

By default the API can handle 16 simultaneous connections. To change this you can do the following:

api.max_connections = new_connection_limit_integer

4.2.5 Encryption (HTTPS only)

The following steps need to be taken to set up encryption
Activate encryption (off by default)
api.use_tls = True
Set cerificate (.cert or .pem)
api.certchain = “path/to/certificate.cert”
Set private key
api.privkey = “path/to/key.pem”
Turn HTTP Redirect on/off (on by default)
api.redirect_http = True
Choose the https port (443 by default)
api.https_port = 443

4.2. Configuring the API 9

	Introduction
	Dependencies
	Code example
	Methods in depth
	API class
	Configuring the API

